高三數學重點知識點整合
2022高三數學重點知識點整合
高三學生很快就會面臨繼續(xù)學業(yè)或事業(yè)的選擇。面對重要的人生選擇,是否考慮清楚了?這對于沒有社會經驗的學生來說,無疑是個困難的想選擇。下面是小編給大家?guī)淼母呷龜祵W重點知識點整合,以供大家參考!
高三數學重點知識點整合
軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的.點必在軌跡上,這叫做軌跡的完備性(也叫做充分性)。
一、求動點的軌跡方程的基本步驟。
1.建立適當的坐標系,設出動點M的坐標;
2.寫出點M的集合;
3.列出方程=0;
4.化簡方程為最簡形式;
5.檢驗。
二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關點法、參數法和交軌法等。
1.直譯法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2.定義法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。
3.相關點法:用動點Q的坐標x,y表示相關點P的坐標x0、y0,然后代入點P的坐標(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關點法。
4.參數法:當動點坐標x、y之間的直接關系難以找到時,往往先尋找x、y與某一變數t的關系,得再消去參變數t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數法。
5.交軌法:將兩動曲線方程中的參數消去,得到不含參數的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動點軌跡方程的一般步驟:
①建系——建立適當的坐標系;
②設點——設軌跡上的任一點P(x,y);
③列式——列出動點p所滿足的關系式;
④代換——依條件的特點,選用距離公式、斜率公式等將其轉化為關于X,Y的方程式,并化簡;
⑤證明——證明所求方程即為符合條件的動點軌跡方程。
高三數學考點知識點歸納
第一部分集合
(1)含n個元素的集合的子集數為2^n,真子集數為2^n—1;非空真子集的數為2^n—2;
(2)注意:討論的時候不要遺忘了的情況。
第二部分函數與導數
1、映射:注意①第一個集合中的元素必須有象;②一對一,或多對一。
2、函數值域的求法:①分析法;②配方法;③判別式法;④利用函數單調性;⑤換元法;⑥利用均值不等式;⑦利用數形結合或幾何意義(斜率、距離、絕對值的意義等);⑧利用函數有界性(、、等);⑨導數法
3、復合函數的有關問題
(1)復合函數定義域求法:
①若f(x)的定義域為〔a,b〕,則復合函數f[g(x)]的定義域由不等式a≤g(x)≤b解出
②若f[g(x)]的定義域為[a,b],求f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域。
(2)復合函數單調性的判定:
①首先將原函數分解為基本函數:內函數與外函數;
②分別研究內、外函數在各自定義域內的單調性;
③根據“同性則增,異性則減”來判斷原函數在其定義域內的單調性。
注意:外函數的定義域是內函數的值域。
4、分段函數:值域(最值)、單調性、圖象等問題,先分段解決,再下結論。
5、函數的奇偶性
⑴函數的定義域關于原點對稱是函數具有奇偶性的必要條件;
⑵是奇函數;
⑶是偶函數;
⑷奇函數在原點有定義,則;
⑸在關于原點對稱的單調區(qū)間內:奇函數有相同的單調性,偶函數有相反的單調性;
(6)若所給函數的解析式較為復雜,應先等價變形,再判斷其奇偶性;
1、對于函數f(x),如果對于定義域內任意一個x,都有f(—x)=—f(x),那么f(x)為奇函數;
2、對于函數f(x),如果對于定義域內任意一個x,都有f(—x)=f(x),那么f(x)為偶函數;
3、一般地,對于函數y=f(x),定義域內每一個自變量x,都有f(a+x)=2b—f(a—x),則y=f(x)的圖象關于點(a,b)成中心對稱;
4、一般地,對于函數y=f(x),定義域內每一個自變量x都有f(a+x)=f(a—x),則它的圖象關于x=a成軸對稱。
5、函數是奇函數或是偶函數稱為函數的奇偶性,函數的奇偶性是函數的整體性質;
6、由函數奇偶性定義可知,函數具有奇偶性的一個必要條件是,對于定義域內的任意一個x,則—x也一定是定義域內的一個自變量(即定義域關于原點對稱)。
高三數學必修一知識點摘要
1.“包含”關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系:A=B(5≥5,且5≤5,則5=5)
實例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:①任何一個集合是它本身的子集。A(A
②真子集:如果A(B,且A(B那就說集合A是集合B的真子集,記作AB(或BA)
③如果A(B,B(C,那么A(C
④如果A(B同時B(A那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。
有n個元素的集合,含有2n個子集,2n-1個真子集