必考的高考數(shù)學(xué)知識(shí)點(diǎn)分析總結(jié)
必考的高考數(shù)學(xué)知識(shí)點(diǎn)分析總結(jié)2023
高中的數(shù)學(xué)難度很大,在高考前,同學(xué)們需要進(jìn)行查漏補(bǔ)缺,也需要提升能力,填補(bǔ)知識(shí)、技能的空白。下面是小編為大家整理的關(guān)于必考的高考數(shù)學(xué)知識(shí)點(diǎn)分析總結(jié),歡迎大家來(lái)閱讀。
高考的數(shù)學(xué)必考內(nèi)容總結(jié)
一、求動(dòng)點(diǎn)的軌跡方程的基本步驟。
1、建立適當(dāng)?shù)淖鴺?biāo)系,設(shè)出動(dòng)點(diǎn)M的坐標(biāo);
2、寫(xiě)出點(diǎn)M的集合;
3、列出方程=0;
4、化簡(jiǎn)方程為最簡(jiǎn)形式;
5、檢驗(yàn)。
二、求動(dòng)點(diǎn)的軌跡方程的常用方法:
求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
1、直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
2、定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
3、相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
4、參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
5、交軌法:將兩動(dòng)曲線(xiàn)方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
求動(dòng)點(diǎn)軌跡方程的一般步驟:
①建系——建立適當(dāng)?shù)淖鴺?biāo)系;
②設(shè)點(diǎn)——設(shè)軌跡上的任一點(diǎn)P(x,y);
③列式——列出動(dòng)點(diǎn)p所滿(mǎn)足的關(guān)系式;
④代換——依條件的特點(diǎn),選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡(jiǎn);
⑤證明——證明所求方程即為符合條件的動(dòng)點(diǎn)軌跡方程。
重要的數(shù)學(xué)高考知識(shí)點(diǎn)歸納
數(shù)列的定義
按一定次序排列的一列數(shù)叫做數(shù)列,數(shù)列中的每一個(gè)數(shù)都叫做數(shù)列的項(xiàng).
(1)從數(shù)列定義可以看出,數(shù)列的數(shù)是按一定次序排列的,如果組成數(shù)列的數(shù)相同而排列次序不同,那么它們就不是同一數(shù)列,例如數(shù)列1,2,3,4,5與數(shù)列5,4,3,2,1是不同的數(shù)列.
(2)在數(shù)列的定義中并沒(méi)有規(guī)定數(shù)列中的數(shù)必須不同,因此,在同一數(shù)列中可以出現(xiàn)多個(gè)相同的數(shù)字,如:-1的1次冪,2次冪,3次冪,4次冪,…構(gòu)成數(shù)列:-1,1,-1,1,….
(4)數(shù)列的項(xiàng)與它的項(xiàng)數(shù)是不同的,數(shù)列的項(xiàng)是指這個(gè)數(shù)列中的某一個(gè)確定的數(shù),是一個(gè)函數(shù)值,也就是相當(dāng)于f(n),而項(xiàng)數(shù)是指這個(gè)數(shù)在數(shù)列中的位置序號(hào),它是自變量的值,相當(dāng)于f(n)中的n.
(5)次序?qū)τ跀?shù)列來(lái)講是十分重要的,有幾個(gè)相同的數(shù),由于它們的排列次序不同,構(gòu)成的數(shù)列就不是一個(gè)相同的數(shù)列,顯然數(shù)列與數(shù)集有本質(zhì)的區(qū)別.如:2,3,4,5,6這5個(gè)數(shù)按不同的次序排列時(shí),就會(huì)得到不同的數(shù)列,而{2,3,4,5,6}中元素不論按怎樣的次序排列都是同一個(gè)集合.
高考中的數(shù)學(xué)必考點(diǎn)
直線(xiàn)與平面有幾種位置關(guān)系
直線(xiàn)與平面的關(guān)系有3種:直線(xiàn)在平面上,直線(xiàn)與平面相交,直線(xiàn)與平面平行。其中直線(xiàn)與平面相交,又分為直線(xiàn)與平面斜交和直線(xiàn)與平面垂直兩個(gè)子類(lèi)。
直線(xiàn)在平面內(nèi)——有無(wú)數(shù)個(gè)公共點(diǎn);直線(xiàn)與平面相交——有且只有一個(gè)公共點(diǎn);直線(xiàn)與平面平行——沒(méi)有公共點(diǎn)。直線(xiàn)與平面相交和平行統(tǒng)稱(chēng)為直線(xiàn)在平面外。
直線(xiàn)與平面垂直的判定:如果直線(xiàn)L與平面α內(nèi)的任意一直線(xiàn)都垂直,我們就說(shuō)直線(xiàn)L與平面α互相垂直,記作L⊥α,直線(xiàn)L叫做平面α的垂線(xiàn),平面α叫做直線(xiàn)L的垂面。
線(xiàn)面平行:平面外一條直線(xiàn)與此平面內(nèi)的一條直線(xiàn)平行,則該直線(xiàn)與此平面平行。平面外一條直線(xiàn)與此平面的垂線(xiàn)垂直,則這條直線(xiàn)與此平面平行。
直線(xiàn)與平面的夾角范圍
[0,90°]或者說(shuō)是[0,π/2]這個(gè)范圍。
當(dāng)兩條直線(xiàn)非垂直的相交的時(shí)候,形成了4個(gè)角,這4個(gè)角分成兩組對(duì)頂角。兩個(gè)銳角,兩個(gè)鈍角。按照規(guī)定,選擇銳角的那一對(duì)對(duì)頂角作為直線(xiàn)和直線(xiàn)的夾角。
直線(xiàn)的方向向量m=(2,0,1),平面的法向量為n=(-1,1,2),m,n夾角為θ,cosθ=(m_n)/|m||n|,結(jié)果等于0.也就是說(shuō),l和平面法向量垂直,那么l平行于平面。l和平面夾角就為0°