高中數(shù)學基礎差該怎么學習
高中數(shù)學基礎差該怎么學習
眾所周知數(shù)學是高考的拉分科目,成績好的的同學可以考到130、140分以上,低分的同學有可能90分以下,學好數(shù)學,基礎非常重要。下面是小編分享的高中數(shù)學基礎差的學習方法,一起來看看吧。
高中數(shù)學基礎差的學習方法
一、快速掌握基礎知識
對于基礎薄弱的同學來說,課本就是他們第一步需要掌握的提分法寶。想要提高數(shù)學成績,你需要記熟數(shù)學課本里的每一個知識點,看懂每一個例題,一章一章的進行掌握。
你可以先記公式,背熟之后在接著研究例題,最后去看課后習題,用例題和習題去思考該怎么解,不要急著去計算,先想就好,然后在翻看課本看公式定理是怎么推導的,尤其是過程和應用案例。對于課本中的典型問題,更是要深刻的理解,并學會解題后反思。這樣才能夠深刻理解這個問題,跳出題海這個怪圈。
做好錯題筆記,記錄容易犯的錯誤,分析錯誤的原因,找到正確的辦法。不要盲目的去做題,必須要在搞清楚概念的基礎上做這些才是有用的。
二、學會運用基礎知識
在掌握數(shù)學基礎知識的同時,要學會知識的運用,這樣你才能在考試中拿到分數(shù)。高中數(shù)學學習的特點是:速度快、容量大、方法多。而這對于基礎差的同學來說,有時聽了會記不住,或是記住了卻不會解題。這時候就需要我們把筆記記好,不需要一字不落的記下老師說的話,只需要把關鍵的思路和結論記下來就可以了,課后在去整理、回看筆記,這也是再學習的一個過程。
想要學好數(shù)學題就必須要多做題,只有做了一定題目才能學好數(shù)學,而且做題是高中數(shù)學學習的主旋律。但是這里的做題不是盲目做題,而是要看題思考,學會思考、反思、總結才是學習數(shù)學的王道。
其實數(shù)學解題并不難,分析題干,挖掘已知條件,尋找這些條件之間有什么關系,得出一個有用的結論,這個結論是我們所要用來解決問題的關鍵,這就是數(shù)學解題的形式。所以想要學好數(shù)學,主要靠的是答題的思路,而不是作出某道題的方法。
高中學習數(shù)學的注意事項
一)、課內重視聽講,課后及時復習。
新知識的接受,數(shù)學能力的培養(yǎng)主要在課堂上進行,所以要特點重視課內的學習效率,尋求正確的學習方法。上課時要緊跟老師的思路,積極展開思維預測下面的步驟,比較自己的解題思路與教師所講有哪些不同。特別要抓住基礎知識和基本技能的學習,課后要及時復習不留疑點。首先要在做各種習題之前將老師所講的知識點回憶一遍,正確掌握各類公式的推理過程,應盡量回憶而不采用不清楚立即翻書之舉。認真獨立完成作業(yè),勤于思考,從某種意義上講,應不造成不懂即問的學習作風,對于有些題目由于自己的思路不清,一時難以解出,應讓自己冷靜下來認真分析題目,盡量自己解決。在每個階段的學習中要進行整理和歸納總結,把知識的點、線、面結合起來交織成知識網(wǎng)絡,納入自己的知識體系。
二)、適當多做題,養(yǎng)成良好的解題習慣。
要想學好數(shù)學,多做題是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎題入手,以課本上的習題為準,反復練習打好基礎,再找一些課外的習題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。在平時要養(yǎng)成良好的解題習慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關鍵時候,你所表現(xiàn)的解題習慣與平時練習無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習慣是非常重要的。
三)、調整心態(tài),正確對待考試。
首先,應把主要精力放在基礎知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎性的題目,而對于那些難題及綜合性較強的題目作為調劑,認真思考,盡量讓自己理出頭緒,做完題后要總結歸納。調整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。
在考試前要做好準備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學會嘗試得分,使自己的水平正常甚至超常發(fā)揮。
由此可見,要把數(shù)學學好就得找到適合自己的學習方法,了解數(shù)學學科的特點,使自己進入數(shù)學的廣闊天地中去。
高中數(shù)學的學習方法和技巧
1.數(shù)形結合思想方法
數(shù)形結合就是充分考查數(shù)學問題的條件和結論之間的內在聯(lián)系,既分析其代數(shù)意義又揭示其幾何意義,將數(shù)量關系和空間形式巧妙結合,來尋找解題思路,使問題得到解決。使問題化難為易、化繁為簡,從而得到解決。例如,在一些分子、分母都是三角函數(shù)或一次函數(shù)的代數(shù)式中,要求它的值域,很多都轉化為經(jīng)過兩點的直線的距離來求解;又或者在一些含有根號的代數(shù)式的題目中,其結構沒有明顯的幾何意義,此時利用兩點間距離公式可能做不出來,若能利用換元法,運用數(shù)形結合的思想方法,也可以很快解決問題。由此可知,數(shù)學結合思想方法是數(shù)學解題中非常重要的方法。
2.分類討論思想方法
分類討論思想方法是指在解答某些數(shù)學問題時,按照一定的原則或某一確定的標準,在比較的基礎上,將數(shù)學對象劃分為若干既有聯(lián)系又有區(qū)別的部分,然后逐類進行討論,再把這幾類的結論匯總,從而得出問題的答案。例如,解不等式ax>2時,我們就把它分為a>0、a=0和a<0三種情況來討論,并依照這三種情況進行下一步驟的解題。這樣就顯得清晰有條理,也不會漏做每一種可能了。
3.函數(shù)與方程的思想方法
函數(shù)與方程的思想是指在解決某些數(shù)學問題時,構造適當?shù)暮瘮?shù)與方程,把問題轉化為研究輔助函數(shù)與輔助方程性質的思想例如,求方程的根的分布問題時,當然可以用解方程的方式,一步步算下來,但是卻非常的繁瑣,而運用函數(shù)的觀點去求解,那不等式的推理證明過程則會簡潔明了許多。不信同學們可以在下面算算這道題:
4.等價轉化思想方法
等價轉化是把未知解的問題轉化到在已有知識范圍內可解的問題的一種重要的思想方法。同學們在遇到難以直接做出的問題的時候,通過轉化變成我們比較熟悉的問題來處理,或者將較為繁瑣、復雜的問題,變成比較簡單的問題,比如從超越式到代數(shù)式、從無理式到有理式、從分式到整式。例如,在有關探求參數(shù) 的取值范圍問題中,當直接構設以參數(shù)為元的不等式較為困難時,??梢氲腶相關系數(shù)a,借助a把問題進行等價轉化。
猜你感興趣: